

EXAMINATION MATERIAL ZUEB - 2022

MATHEMATICS XI

SECTION "A" MULTIPLE CHOICE QUESTION (MCQ'S)

Chapter no 1	SETS	
SUB TOPIC	1.1	Revision
		A few definitions
		Operations on sets
	A STATE OF THE PARTY OF THE PAR	Some important laws

- 1) $(A \cap A')$ is equal to
 - a. U
 - **b.** \$\phi\$
 - c. $\{\phi\}$
 - d. A
- 2) If $A = \{2,3\}$ and $B \{3,4\}$ then $(A B) \cap B =$
 - a.
 - b. $\{\phi\}$
 - c. $\{2\}$
 - d. {3}
- 3) The number of elements in the set $A = \{x | x \in \mathbb{Z}, -1 \le x \le 5\}$ where z is the set integers is
 - a. 5
 - b. 6
 - c. 7
 - d 8
- 4) If U is the universal set and A is any non-empty set then AUA' =
 - a. A
 - b. A'
 - c. U
 - d. Φ
- 5) If A and B are any two sets then (AUB) =
 - a. A'UB'
 - **b.** A'∩B'
 - c. A∩B
 - d. None of these
- 6) If $A = \{2,3\}$ and $B = \{1,2\}$ then A B is equal to
 - a. {1,1}
 - b. {0.3}
 - c. {3}
 - d. {2}

Chapter no 2	Real &	complex number systems
SUB TOPIC	2.2	The systems c of complex numbers
		Properties of complex numbers
		Definition of Imaginary numbers
		Conjugate of complex numbers
		Modulus of a complex numbers
		The subtraction of complex numbers
		The division of complex numbers
	2.3	Geometrical representation of the complex number $x + iy$ as pair of real numbers x , y . The order relations Vector interpretation of complex numbers The triangle inequality. Real and Imaginary part of $(x + iy)''$

- 1) If z = -3i + 2, then $z + \hat{z} =$
 - a. 6i
 - b. 6
 - c. 0
 - d. 4
- 2) Imaginary part of $i(3 + 5i^2)$ is
 - a. -2i
 - b. 3i
 - c. -2
 - d. -5
- 3) If z is a complex number then z. \overline{z} =
 - a. z^2
 - b. $(\bar{Z})^2$
 - c. |z|
 - d. $|z|^2$
- 4) Let x + 3i = 2yi the values of x and y respectively are
 - a. 0 and 0
 - b. $\frac{3}{2}$ and 0
 - c. $\frac{3}{2}$ and $\frac{2}{3}$
 - **d.** 0 and $\frac{3}{2}$
- 5) (a,b).(c,d) =
 - a. (ac + bd, ad + bc)
 - b. (ac bd, ad bc)
 - c. (ac bd, ad + bc)
 - d. (ac + bd, ad bc)

- 6) The real and imaginary parts of i (3-2i) are respectively
 - a. -2 and 3
 - b. 2 and -3
 - c. 2 and 3
 - d. -2 and -3
- 7) If z = -4 + 3i then \bar{z} is equal to
 - a. 4+3i
 - b. -4
 - c. 4 3i
 - d. -4-3i
- 8) The multiplication inverse of (-3, 8) is
 - a. (3,-8)

 - b. $-(\frac{1}{3}, \frac{1}{8})$ c. $(\frac{1}{3}, \frac{-1}{8})$ d. $(\frac{-3}{73}, \frac{-8}{73})$
- 9) Magnitude of 3 -4i is
 - a. 25
 - b. 1
- **10)** The real and imaginary parts of $\frac{2-i}{3}$ are respectively

 - a. $\frac{-2}{3}$ and $\frac{1}{3}$ b. $\frac{-1}{3}$ and $\frac{-2}{3}$ c. $\frac{2}{3}$ and $\frac{-1}{3}$
 - d. $\frac{-1}{3}$ and $\frac{2}{3}$
- 11) If (x + 3,3) = (-5,3), then value of x is
 - a. -7
 - b. -2
 - c. -8
 - d. -5

Chapter no 3	EQUAT	TIONS
SUB TOPIC	3.3	The cube roots of unity Properties of the cube roots of unity. Equations reducible to the quadratic form
	3.5	The theory of quadratic equations Nature of the roots of a quadratic form
	3.6	Relations between the roots and the coefficients of a quadratic equation. To form a quadratic equation when it roots are given.
	3.8	System of two equations involving two variables. Solution of different types of systems of equations.

1) The roots of a quadratic equation are equal if

a.
$$b^2 - 4ac > 0$$

b.
$$b^2 - 4ac = 0$$

c.
$$b^2 - 4ac < 0$$

d.
$$b^2 - 4ac$$
 is a perfect square

2) The product of the roots of the equation $2x^2 - 6x - 15 = 0$ is

- 3) If $i = \sqrt{-1}$ then value of $(-i^3)^2$ is
 - a. 1
 - b. i
 - c. -i
 - d. -1
- 4) If i is an imaginary number then i^{33}
 - a. i
 - b. -1
 - c. 1
 - d. -:
- 5) If ω is a complex cube root of unity then ω^{256} is
 - a. -α
 - b. ω^2
 - c. o
 - d. 1

6)	The sum of the roots of the equation $y^2 - 2y + 8 = 0$
	a. 2

b. 4

c. 8

d. -8

7) If 2^{x+2} is =1/32 then x is equal to

a. 2

b. -2

c. -7

d. 8

8) The product of the roots of the equation $y^2 + 1 = 7y - 7$ is

a. 4

b. 8

c. 7

d. 1

9) If ω is a complex cube root of unity then $(2 - \omega - \omega^2)^2 =$

a. -1

b. 1

c. 3

d. 9

10) The value of $(1+\omega^2)^3$ is

a. 1

b. ω

c. -1

d. -ω

11) The roots of the equation $x^2 + 16 = 0$ are

a. +4i, -4i

b. <u>+</u>4

c. <u>+</u>5i

d. <u>+</u>16i

12) π is a/an

a. Natural number

b. Integers

c. Rational number

d. Irrational number

13) If ω is a complex root cube of unity then ω^{17} =

a. 0

b. 1

c. ω

d. ω^2

- **14)** If the roots of the equations $px^2 + qx + r 0$ are imaginary then $q^2 4pr$ is
 - a. zero
 - b. less than zero
 - c. greater than zero
 - d. perfect square
- **15**) If $4^{x+2} = 64$ then x is equal to
 - a. 2
 - b. 0
 - c. 1
 - d. 3
- **16)** If ω is a complex cube root of unity then $\omega^3 + \omega^4 + \omega^5 =$
 - a. 1
 - b. ω
 - c. ω^2
 - d. 0
- 17) If ω is a complex cube of unity then $(1 + \omega + \omega^2)^2$ will be equal to
 - a. 0
 - b. 1
 - c. 4
 - d. ω^2

Chapter no 4	Matrice	es & Determinants
SUB TOPIC	1.2	introduction
		Matrices
		Notation
		Special types of matrices
		Algebra of matrices
		Properties of matrix operations
	4.4	The multiplicative inverse of a square matrix.
		Distinction between homogenous and non-homogenous
	syster	ns of linear equations.
	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM	Solving a system of three non-homogenous linear
		equations in three unknowns.

- 1) If order of matrices A and B respectively are 2 x 3 and 3 x 4 than order of AB:
 - a. 2 x 2
 - b. 3 x 3
 - c. 2 x 4
 - d. 4 x 2
- 2) If $\begin{bmatrix} 4 & 2 \\ 3 & \lambda \end{bmatrix}$ is a singular matrix then λ =
 - a. 6
 - b. +5
 - c. $\frac{3}{2}$
 - d. $\frac{2}{3}$
- 3) A square matrix A is said to be singular if
 - a. |A| = 1
 - b. A = 0
 - c. |A| = 0
 - d. A = 1
- 4) If the order of two matrices A and B is m x n and n x p respectively then the order of matrix AB is
 - a. pxm
 - b. nxp
 - c. pxn
 - d. mxp
- 5) If $\begin{pmatrix} 3 & a \\ 2 & 8 \end{pmatrix}$ is a singular matrix then the value of 'a' is
 - a. 10
 - b. 12
 - c. -12
 - d. -1/12

- 6) $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ is a/an
 - a. Rectangular Matrix
 - b. Scalar Matrix
 - c. Diagonal Matrix
 - d. Unit Matix
- 7) If $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 7 \\ 9 & 8 & 6 \end{bmatrix}$ then the fo factor A_{31} is equal to
 - a. 1
 - b. -1
 - c. 0
 - d. 2
- 8) If A and B are two matrices conformable for multiplication then (AB)^t is equal to
 - a. A^tB^t
 - b. AB
 - c. BtAt
 - d. BA
- 9) If A,B and C are nonsingular matrices then $(CBA)^{-1}$ =
 - a. A⁻¹ B⁻¹ C⁻¹
 - b. C⁻¹ B⁻¹A⁻¹
 - c. (ABC)⁻¹
 - d. ABC
- 10) If A is a square matrix then $|A|A^{-1}$ =
 - a. AA⁻¹
 - b. $|A|I_3$
 - c. Adj A
 - $d. A^2$
- 11) A diagonal matrix in which all the diagonal elements are equal is called
 - a. Null matrix
 - b. Unit matrix
 - c. Zero matrix
 - d. Scalar matrix
- 12) Two matrices A and B are comfortable for addition if both have
 - a. Same elements
 - b. Same order
 - c. Same rows
 - d. Same columns

13) [1 2 5]^t is

- a. Diagonal matrix
- b. Column matrix
- c. Scalar matrix
- d. Row matrix

14) The matrix
$$\begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix}$$
 is a

- a. Diagonal matrix
- b. Scalar matrix
- c. Unit matrix
- d. Null matrix

Chapter no 6 S	equer	nces & series			
SUB TOPIC	1.3	introduction arithmetic progression (A.P) standard form of an A.P			
	1.4	Arithmetic series			
	6.4 Geometric sequence or geometric progression (G.P). Standard form of a G.P				
	6.5	Geometric series			
A S S S S S S S S S S	6.8	Harmonic sequence or harmonic progression (H.P). General term of an H.P The characteristics relation for an H.P An important theorem Harmonic means. To insert (i) A single harmonic means; (ii) n harmonic means (n > 1),			
11/2000/2017	betwe	een two numbers a and b.			

- 1) The sum of infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{4}$
 - a. ∞
 - b. 0
- c. 1 d. $\frac{1}{2}$ 2) If $a^2 b^2 c^2$ are three terms of an A.P. then

 - a. $a^2 = \frac{b^2 + c^2}{2}$ b. $b^2 = \frac{a^2 + c^2}{2}$ c. $c^2 = \frac{b^2 + c^2}{2}$ d. $a^2 + b^2 + c^2$
- 3) If in a G.P., a=3 and $r=\frac{2}{3}$ then S_3 is equal to
 - a. 19/3
 - b. 12
 - c. 15
 - d. 18

4)	The	geometric	means	between	2 and	d ½ a	re equal	to
" /	1110	geometrie	means	DCt W CCII	2 um	u / 2 u	re equar	ιο

b.
$$\pm \sqrt{2}$$

c.
$$\pm \frac{1}{\sqrt{2}}$$

5) If 1, x - 1, 3 are in A.P then x =

a.
$$-1$$

6) The H.M. between 3 and 6 is

c.
$$\pm \sqrt{18}$$

7) The progression 3,9,27,81 is a / an

8) The G.M between 2 and 8 is

9) The H.M. of 2 and 5 is

a.
$$\frac{7}{2}$$

b.
$$\pm \sqrt{10}$$

c.
$$\frac{20}{7}$$

10) If A.M is the Arthmetic mean between a and b, then A.M =

a.
$$\frac{a+b}{2}$$

a.
$$\frac{a+b}{2}$$

b.
$$\frac{ab}{a+b}$$

$$c. \quad \frac{a}{-3i+4}$$

d.
$$\sqrt{ab}$$

Chapter no 7 Permutations, combination & introduction to probability

SUB TOPIC

Numbers of permutations 7.2 Circular (or cyclic) permutations

- 1) If a die and a coin are tossed simultaneously then the probability of getting two heads is
 - a. 1/3
 - b. ½
 - **c.** 0
 - d. 1
- 2) The number of ways in which 7 girls can be seated around a round table is

 - b. 6!
 - c. 7
 - d. 7!
- 3) ⁿP_r is equal to
 - r!(n-r)!
- 4) The number of ways in which 5 persons can be seated in a row is
 - a. 120
 - b. 24
 - c. 6
 - d. Infinite
- 5) $\binom{6}{2,3}$ is equal to

 - b. 60
 - c. 120
 - d. 240
- **6**) The number of permutations of the letters of the word COMMITTEE is

 - b. $\binom{6}{222}$ c. $\binom{9}{221}$ d. $\binom{222}{9}$

- 7) A coin tossed thrice. The probability of getting three tail is

 - a. $\frac{1}{2}$ b. $\frac{3}{2}$ c. $\frac{1}{8}$ d. $\frac{2}{3}$

Chapter no 8	Mathe	matical induction & binomial theorem				
SUB TOPIC	B TOPIC 8.1 The principle of mathematical induction					
	8.3	Binomial theorem The binomial theorem for a positive integral index. Some important observations The general term. The middle terms				
//6	8.5	Approximations Application of summation of series.				

- 1) $\sum n^3 =$

 - b. $[n(n+1)/2]^2$
 - n(n+1)
 - n(n+1)(2n+1)
- 2) The total number of terms in the expansion of $(a+b)^n$ $(n \in N)$ is
 - a. n
 - b. n+1
 - c. n-1
 - d. n+2
- 3) \sum n is equal to
 - a. $\frac{n(n+1)}{2}$

 - c. $\frac{n(n+1)(2n+1)}{6}$
 - d. $\frac{n2(n+1)}{3}$
- 4) $1-2x + 3x^2$ _____ is equal to
 - a. $(1-x)^{-1}$
 - b. $(1-x)^{-2}$
 - c. $(1+x)^{-1}$
 - d. $(1+x)^{-2}$

- 5) $\sum_{n=1}^{3} n3$ is equal to
 - a. 30
 - b. 12
 - c. 48
 - d. 36
- 6) The middle term in the expansion of $(2 \times \frac{1}{x^2})^{20}$ is the:
 - a. Ninth term
 - b. Tenth term
 - c. Eleventh term
 - d. Twelfth term
- 7) If n = 0 then $\frac{(n+1)!}{n!} =$
 - a. 0
 - b. 1
 - c. n
 - d. ∞
- 8) The middle term in the expansion of $x^2 \left[x^2 + \frac{1}{x}\right]^{2n}$ is
 - a. $(2n+1)^{th}$ term
 - b. $(2n+2)^{th}$ term
 - c. $(n+1)^{th}$ term
 - d. $(n+2)^{th}$ term
- **9**) $\sum n^2 =$

 - n(n+1)
 - n(n+1)
- 10) $\sum_{n=3}^{20}$ $n^0 =$
 - a. 17
 - b. 18

 - c. 19
 - d. 20
- 11) The value of ${}^8P_{2 \text{ is}}$
 - a. 66
 - b. 76
 - c. 56
 - d. 86

- **12)** If |x| < 1 then $1 + x + x^2 + x^3 +$ _____ is equal to
 - a. $(1-x)^{-2}$
 - b. $(1+x)^{-2}$
 - c. $(1-x)^{-1}$
 - d. $(1+x)^{-1}$
- 13) $\frac{n!}{(n+1)!}$ is equal to
 - a. n
 - b. n + 1
 - c. $\frac{1}{n}$
 - d. $\frac{1}{n+1}$
- 14) If a balanced die is rolled then the probability of getting 3 is
 - a. $\frac{2}{3}$
 - b. $\frac{3}{2}$
 - c. $\frac{1}{3}$
 - d. $\frac{1}{6}$
- **15**) The total number of terms in the binomial expansion of $(y^2 + \frac{b^2}{y^2})^n$ is
 - a. n
 - b. n-1
 - c. n + 1
 - d. 2n
- 16) If the sides of a triangle are 5, 5 and 7 units then 2s is equal to
 - a. 6
 - b. 9
 - c. 18
 - d. 17
- 17) $\frac{(n+1)!}{n!}$ is equal to
 - a. $\frac{n+1}{n}$
 - b. n + 1
 - c. n(n+1)
 - d. (n+1)!

Chapter no 9	Fundar	mental of trigonometry
SUB TOPIC	9.1	Introduction Radian measure General and its measure in degrees and radian. Relation between radian and degree measure. Relation between arc-Length, radius and general angle.
	9.2	The radian function Signs of the trigonometry function in the four quadrants.

- 1) The angle 135° in radians is
 - a. $\frac{5\pi}{4}$
 - b. $3\pi/4$
 - c. $\frac{2\pi}{4}$
 - d. 135π
- 2) If $\sin \theta < 0$ and $\cos \theta > 0$ then $P(\theta)$ is in
 - a. 1st Quadrant
 - b. 2nd Quadrant
 - c. 3rd Quadrant
 - d. 4th Quadrant
- 3) If $\cot \theta < 0$ and $\cos \theta < 0$ then $p(\theta)$ lies in the
 - a. 1st quadrant
 - b. 2nd quadrant
 - $c. 3^{rd}$ quadrant
 - d. 4th quadrant
- 4) $\cos 90^{\circ} \cos 30^{\circ} \sin 90^{\circ} \sin 30^{\circ}$ is equal to
 - a. $\frac{1}{2}$
 - b. $\frac{3}{2}$
 - c. $-\frac{3}{2}$
 - d. $-\frac{1}{2}$
- 5) If arc length S is equal to the radius r, then the central angle θ is
 - a. 0 radian
 - b. ½ radian
 - c. 2 radian
 - d. 1 radian
- **6**) If $\tan \theta < 0$. $\cos \theta > 0$ then $p(\theta)$ is in the
 - a. 1st quadrant
 - b. 2nd quadrant
 - c. 3rd quadrant
 - d. 4th quadrant

- 7) The arc length of a unit circle with Centre angle $\pi/6$ radian is approximately
 - a. 0.523
 - b. 1.52
 - c. 2.52
 - d. 3.52
- 8) If $\sin \theta > 0$ and $\sec \theta < 0$ then $p(\theta)$ lies in this quadrant
 - a. first
 - b. second
 - c. third
 - d. fourth
- **9**) $Cot(-\theta)=$
 - a. $-\cot \theta$
 - b. $-tan \theta$
 - c. $\frac{1}{\cot \theta}$
 - d. $\frac{1}{\tan \theta}$

Chapter no 10	Trigono	ometric identities
SUB TOPIC	10.2	The distance formula
		A fundamental law.
		Deduction from the fundamental law.
		The sum and difference identities
	MAR	Applications

- 1) $Cos(90 \alpha)$ is equal to
 - a. sin α
 - b. $\cos \alpha$
 - c. –cos α
 - d. $-\sin \alpha$
- 2) Tan $(180^{\circ} \theta) =$
 - a. $tan \theta$
 - b. $-\tan\theta$
 - c. $\cot \theta$
 - d. $-\cot \theta$
- 3) The distance between (a,0) and (0,b) is
 - a. $a^2 + b^2$
 - b. $(a^2 + b^2)^{1/2}$
 - c. $\sqrt{a+b}$
 - d. None of these

- 4) $1-2\sin^2\frac{\theta}{2}$ is equal to
 - a. $\sin \theta$
 - b. $\cos \theta$
 - c. $\sin \frac{\theta}{2}$
 - d. $\cos \frac{\theta}{2}$
- 5) The distance between the point (1,1) and (2,1) is
 - a. 0 unit
 - b. 1 unit
 - c. 2 units
 - d. 3 units
- **6)** Sin $(180 + \theta) =$
 - a. $\cos \theta$
 - b. $-\cos\theta$
 - c. $\sin \theta$
 - d. $-\sin \theta$
- **7**) $1/1 + \tan^2 \theta$
 - a. $\sec^2 \theta$
 - b. $\cos^2 \theta$
 - c. $\sin^2 \theta$
 - d. $\cot^2 \theta$
- 8) $\cos \mu \cos v =$
 - a. $2\sin\frac{\mu+u}{2}\cos\frac{\mu-u}{2}$
 - b. $2\cos\frac{\mu+u}{2}\cos\frac{\mu-u}{2}$ c. $2\sin\frac{\mu+u}{2}\sin\frac{\mu-u}{2}$

 - $d. -2\sin\frac{\frac{\mu+u}{2}}{2}\sin\frac{\frac{\mu-u}{2}}{2}$

Chapter no 12	Solutio	n & triangles	
SUB TOPIC	12.2	Solution of a triangles.	
	12.5	Circles associated with a triangle Circum-radius in terms of the measure of a side and	the
		measure if the opposition angle. Circum-radius r in terms of the measure of three	sides of
		a triangle.	sides of
		The in-radius of a triangle.	
		Radii of e-circles of a triangle.	

- 1) If angle a in \triangle ABC is in standard position the law of cosine is
 - a. $a^2 = b^2 + c^2 + 2bc \cos \alpha$
 - **b.** $a^2 = b^2 + c^2 2bc \cos \alpha$
 - c. $a^2 = b^2 + c^2 bc \cos \alpha$
 - d. $a^2 = b^2 + c^2 + bc \cos \alpha$
- 2) If a,b,c are the sides of triangle ABC then R =
 - a. $\frac{abc}{4}$
 - b. $\frac{\Delta}{abc}$
 - c. $\frac{\Delta}{s}$
 - d. $\frac{abc}{4\Delta}$
- 3) Area of a triangle ABC is
 - a. $\frac{1}{2}$ ab sin β
 - b. $\frac{1}{2}$ bc sin α
 - c. $\frac{1}{2}$ ac sin γ
 - d. $\frac{1}{2}$ bc sin β
- 4) If the sides of a triangle are 5, 6 and 7 units then 2s is equal to
 - a. 6 units
 - b. 9 units
 - c. 18 units
 - d. 27 units
- 5) The circle inscribed within a triangle so that it touches all the sides of the triangle is called
 - a. In circle
 - b. In Centre
 - c. Circum circle
 - d. Circum Centre

- 6) The in radius r of triangle ABC is equal to
 - a. s∆
 - **b.** $\frac{\Delta}{s}$
 - c. $\frac{s}{\Delta}$
 - d. $\frac{\Delta}{s-a}$
- 7) If |x| < 1 then $1 + 2x + 3x^2 + 4x^2 + \underline{\hspace{1cm}} =$
 - a. $(1+x)^{-1}$
 - b. $(1-x)^{-1}$
 - c. $(1+x)^{-2}$
 - d. $(1-x)^{-2}$
- 8) In a triangle ABC if $\gamma = 90^{\circ}$ then the law of cosine reduces to
 - a. $a^2 = b^2 + c^2$
 - b. $b^2 = a^2 c^2$
 - c. $c^2 = a^2 + b^2$
 - d. $c^2 = a^2 b^2$
- 9) In an escribed triangle ABC, $\frac{\Delta}{r_3}$ =
 - a. s
 - b. (s-a)
 - c. (s-b)
 - d. (s-c)
- **10**) If $r\cos\theta = 4$ and $r\sin\theta = 3$ then r =
 - a. 3
 - b. 5
 - c. 6
 - d. 2
- 11) If the sides of a triangle are a, b, and c then $\frac{a-b+c}{2}$
 - a. s
 - b. s-a
 - $\mathbf{c.} \quad \mathbf{s} \mathbf{b}$
 - d. s-c

Chapter no 13 Inverse trigonometric function & trigonometric equations

SUB TOPIC

13.2 Applications
Solution of trigonometric equations.

- 1) The period of $\sin x$ is
 - a. $\pi/2$
 - b. π
 - c. –π
 - d. 2π
- 2) The principle value of tan (arc tan (-1)) is
 - a. -1
 - b. 1
 - c. ∞
 - d. 0
- 3) The period of tanx is
 - a. π
 - b. $\frac{\pi}{2}$
 - c. 2π
 - d. None of these